
Reveal: Fine-grained Recommendations
in Online Social Networks

Markos Aivazoglou1, Orestis Roussos1, Sotiris Ioannidis1, Dimitris Spiliotopoulos2, and Jason Polakis3

1FORTH, email: {markos, roussos, sotiris}@ics.forth.gr
2University of Houston, email: dspiliotopoulos@uh.edu

3University of Illinois at Chicago, email: polakis@uic.edu

Abstract—Content selection in social networks is driven by
numerous extraneous factors that can result in the loss of content
of interest. In this paper we present Reveal, a fine-grained
recommender system for social networks, designed to recommend
media content posted by the user’s friends. The intuition is to
leverage the abundance of pre-existing information and identify
overlapping user interests in specific sub-categories. While our
system is intended as a component of the social network, we
develop a proof-of-concept implementation for Facebook and
experimentally evaluate the effectiveness of our approach.

I. INTRODUCTION

A critical aspect of the popularity of social networks, which
also drives user engagement, is the sharing of content among
friends. However, the massive amount of content published can
result in users missing content of interest, due to the overall
noise. Furthermore, the content shown in Facebook’s News
Feed is heavily influenced by the user’s relationship to the
friend that published it [1]; thus, “weak” social ties can lead
to the loss of content of interest.

In this paper we propose Reveal, a recommender system
that exists within the social network that categorizes content
and offers suggestions based on the interest similarities between
the user and the friend that published the content. Specifically,
Reveal processes all content published by the user’s friends,
identifies content from different categories (e.g., music), and
then collects information to assign that content to a more
specific sub-category (e.g., music (sub)genres). Subsequently,
the system analyzes accompanying text to identify the sentiment
regarding that content and infer if a positive or negative opinion
was expressed. Based on the user’s interest profile, and the
similarity score with that friend, Reveal determines if the
content should be suggested to the user or not.

Previous work has focused on like objects for recommend-
ing content [2]. Facebook has also implemented a recommender
system that suggests content liked by friends. Our system
follows a different approach; it aims to filter through the
massive amount of content that is posted by a user’s friends,
and select posts most likely to be of interest to the user. Another
key concept behind our system that differentiates it from other
recommender systems, is that it enables users to leverage
their existing knowledge regarding the overlapping interests
they have with their online friends, in a fine-grained manner.
While certain users may have very similar tastes in a specific
subcategory, they might have completely different interests

in other categories. It is important to note that our system is
not intended as a replacement for existing content selection
algorithms for users’ News Feeds; instead we aim to identify the
most interesting items (e.g., Youtube videos) posted by a user’s
friends, which may be otherwise lost amidst the massive amount
of generated content. These selected posts are to be presented
in a separate recommendations section, each dedicated to a
specific category, thus expanding the existing functionality of
the social network, and improving the user experience.

II. METHODOLOGY

Our system consists of three main components:
Backend. The main component comprises the backend, and

functionality can be broken down to three tasks:
Bootstrapping, where every like under categories of interest

in the users’ and their friends’ profiles are analyzed, for
extracting entities and conducting a fine-grained categorization.
This data is then leveraged for creating users’ interest profiles.

Similarity calculation and score tweaking, in which Reveal
compares the users’ interest profile to that of their friends and
assigns a similarity score to each one. At this stage, the users
can manually tweak any similarity scores to their liking, thus
modifying the weights for specific sub-categories or friends.
Essentially, this step builds the required social knowledge that
enables the system to later accurately identify content that
matches the users’ interests.

Post analysis and list generation, for processing the text
accompanying content published by the user’s friends. This step
extracts semantic information from posts and infers whether
the poster has expressed a positive or negative opinion about
the media content. This allows Reveal to assert whether it
overlaps with the user’s categories of interest, to calculate its
significance and, ultimately, to decide whether it should be
recommended to the user. To reduce the latency introduced
by accessing large collections of online data, we created an
offline knowledge base containing entities of interest, also
acting as a data cache to avoid excessive network traffic and
operational overhead delays. Our entity extraction mechanism
also leverages online resources for data not found locally.

Housekeeping. This component consists of two distinct
modules with separate functionalities, which are executed
periodically. One module refreshes the recommendation lists
for each user so as to contain fresh content. The other module,
which is executed less frequently, polls users’ profiles to

TABLE I. List of notations used throughout paper.

Variable Description
GS GenreScore Genres in user’s/friend’s set of likes
GSL GenreScoreList List of genre scores for a user/friend
OGS OveralGenreScore Sum of genre scores in GSL
LS LikeScore GS avg for genres corresponding to like
LSL LikeScoreList List of LS entries for a user/friend
OLS OveralLikeScore Sum of like scores in LS
GSS GenreSimilarityScore Genre similarity between user&friend
LSS LikeSimilarityScore Like similarity between user&friend
FSS FriendSimilarityScore GSS/LSS similarity between user&friend
PS PostScore Rank of a friend’s post
PG PostGenres Genres extracted from a post

account for any changes made to their likes and interests.
This is done for recalculating necessary scores and weights
based on new information.

Frontend. This is the interactive component of our app,
where users can view the lists of recommended content, or
tweak the weight of their friends to better reflect the desired
similarity score for specific (sub)genres.

A. Bootstrapping

This component is responsible for the entire bootstrapping
phase, where the required data about the active user and his
or her friends (hereby referred to as a clique), is collected
and processed. We create interest profiles from likes found
on their personal Facebook profiles, namely, under the Music
and Movies endpoints [3]. Furthermore, in order to provide
fine-grained recommendations, accurate and detailed genre
identification for each like is crucial. Consulting our Knowledge
Base, we extract entities and information about their genres1

and categories. Table I explains our notations.
Genre and like scoring. Facebook allows users to express

their interests through likes associated with specific objects
(pages, posts, etc). However, not all likes are equally represen-
tative of the user’s preferences, and identifying which should
have more contribution during the content selection process is
critical for providing accurate recommendations. By analyzing
all of the user’s likes, we calculate the significance of all
identified genres for the user. Each like represents an entity
which corresponds to a set of associated genres, as specified
by our Knowledge Base. We create GSL for every user in the
clique, a key-value table where each genre is the key and the
number of occurrences throughout all likes, is the value.

To normalize the genre similarity between a user and his or
her friends at a later stage, we also calculate an overall score
of genres for each of them as shown in Equation 1.

OGS = ∑
i∈GSL

GS(i) (1)

where GS(i) is the genre score for a specific entry in GSL.
In addition, we create a LSL for every clique member’s likes,

to weight them using the GS values in GSL calculated above.
LSL is an average calculation of the GS corresponding to the
genres found both in the like item and in GSL. This metric
allows us to weigh likes according to the genre preferences

1For simplicity, genre will denote fine-grained sub-genre information.

of the user. The LS scores in LSL are used for calculating
similarity with other users. We create an overall Like score,

OLS = ∑
j∈LSL

LS(j) (2)

used later for normalization when calculating like similarity.
As a fallback option, if there is not enough information for

a specific user, we crawl through their post history and attempt
to identify and extract entities for creating their interest profile.

B. Sentiment Analysis

Posts are first processed by our sentiment analysis module,
and those with negative polarity are discarded. If there is no
accompanying text we assume that a positive polarity is implied,
the intuition being that users are implicitly recommending them.

Analyser. A crucial aspect of recommendations, especially
when natural language is involved, is detecting the reviewer’s
point-of-view on the topics and subjects they post; for instance,
the text that accompanies links shared on Facebook. Sentiment
analysis defines the method of discerning the positive feeling
(attractiveness) or negative feeling (aversiveness) in text, and
has been extensively explored in various contexts [4], [5],
[6], [7]. Reveal needs the ability to discern the poster’s
opinion, for providing accurate recommendations, and leverages
a modified version of the SO-CAL approach introduced by
Taboada et al. [8]. SO-CAL extracts sentiment polarity and
strength from text, and consists of the proposed algorithm and
a set of dictionaries categorized by their part-of-speech. There
are 6 different dictionaries in the set containing 1542 Nouns,
1142 Verbs, 2824 Adjectives, 876 adverbs, and 217 Valence
shifters. We opted for SO-CAL due to its ranked dictionaries
with words scored with sentiment intensity (valence) for fine-
grained sentiment tagging, and also the scoring heuristics
which performed better than other dictionary-based approaches
we tested. Additionally, we made some modifications, such
as changing the SO value of certain words, simplifying the
negation lexicon, and adding an emoticon lexicon (110 entries)
that we created manually using information from Wikipedia.

Text pre-processing. We filter out Facebook tags (with
@) and non-English or non-printable characters. We use the
NLTK toolkit for part-of-speech (POS) tagging and the Pattern
module [9] for text processing (splitting and tokenization).

Semantic strength tagging using dictionaries. SO-CAL
uses dictionaries with words grouped by their Part-of-Speech,
ranked with valence strength (in the range [−5,0)∪ (0,5]).
Tagging is necessary as a word may be defined with different
POS, which results in different valence strength. Additionally,
as the use of emoticons is widespread in social media, we rank
and handle them accordingly.

Valence shifters. Valence shifters are words that carry
different semantic values than the words described so far,
and their POS-tag does not necessarily affect their use. They
are called shifters as they change the strength or effect of
a lexical item when they are nearby. Their area of effect is
limited, which is defined by various grammatical properties.
Each valence shifter is assigned an SO value, although it is
applied differently on the score calculation. Specifically, it

works as an additive multiplier on the initial SO value of the
lexical item it shifts. The default multiplier for words is 1.

Negation. We apply shift negation, where a term’s SO value
is shifted towards the opposite polarity by a fixed amount.

Scoring. Valence shifters and negators are applied as
modifiers to the SO value. To calculate the final SO value,
we recursively apply any modifier value found searching
backwards, until a determiner (e.g., a comma or sentence
connective) is found. This calculation is applied to every lexical
term and the sum of every sentence’s SO value is aggregated,
producing the total SO value of a given text.

Irrealis blocking [8], [10], is used to describe situations
where something has not happened yet as the speaker is talking
and, thus, the result or action is uncertain. This contains
subjunctive, conditional and imperative moods which can be
detected by a pattern module. Some of them, such as the
imperative mood, may be semantically significant in our case,
as it can be used to express sentiment upon a subject. That
means, words in the effective radius of an irrealis marker (e.g.,
modals and quoted sentences), have a nullified SO value. We
also ignore sentences that are categorized as questions.

C. Entity Extraction

To gather information about the friends’ posts, we have to
analyze their entire activity. Our goal is to define all the entities
in a friend’s post and keep those that belong to categories of
interest. Reveal utilizes 3 endpoints (Facebook edges) from
the Facebook Graph API to obtain the needed data, Links which
are posts containing a URL, and two kinds of Actions which
are posts with user generated social stories [11]. Specifically,
we use the listening and watching social stories.

We also leverage the Freebase [12] collection for creating a
knowledge base of entities. Google’s Knowledge Graph Search
API was partly powered by Freebase, which was recently
deprecated and replaced by the Graph API. We extracted every
entity under musical artists/bands and movies coupled with
detailed genre information, through their API. Specifically,
we obtained 293,506 unique entities, 221,091 movie entities
and 72,415 musical artist/bands entities paired with genres,
as JSON objects. Each entity in the knowledge base carries
a unique Topic ID as provided by Freebase, that we use
for entity matching with Youtube videos. We developed a
dictionary-based entity extractor, that utilizes resources from
our knowledge base. In addition, to swiftly map a video to its
respective topic (entity) we developed an indexer that maps
each Topic ID to its entity and every corresponding Video
ID found in Youtube at that time. This resource serves as a
data cache that enables fast named entity recognition, without
minimal reliance on online APIs, and also reduces excessive
network traffic and delays due to operational overhead.

Links. Facebook Links are posts that contain a link/URL.
To extract entities, we obtain each URL by calling the
appropriate Graph API endpoint, filter out non-Youtube URLs,
and extract the Video ID. We match potential entities using
the aforementioned Video ID-to-Topic ID mechanism.

Our entities in the knowledge base are indexed with their
unique Topic ID, enabling us to directly extract any of them
that is related to a given Youtube video.

Actions. Entity recognition in these posts is straightforward,
as the name or title of the item is found within the post’s data.
Since Facebook prohibits fetching comments accompanying
Actions, again we assume they are positive recommendations.
However, as Reveal is designed to be deployed by Facebook,
in practice it would also have access to the comments.

D. Quantifying Similarity

A challenging aspect of the content recommendation process,
is selecting the similarity formula that will quantify how
interesting a specific post will be to the user. In previous
work [2] the proposed system used an interactive graph, where
item and friend weights were assigned manually and required
user interaction even in the initial stage. Scores were also in
a capped scale (1 to 5 inclusive), thus, not being as fine-
grained as needed. To that end, we opted to employ the
Jaccard coefficient, and created a formula that is well suited
for automatic similarity calculation in sets with weighted items
and of arbitrary size. Specifically, we devised a formula that
contains certain modifications to the Jaccard coefficient, as we
describe next. To calculate the similarity among the users and
their friends in a fine-grained manner, we leverage the genre
and like scores calculated in the bootstrap phase; our in-depth
profiling of each user’s interests, enables us to develop an
accurate mechanism for “scoring” friends and posts.

To calculate genre similarity score between a user and a
friend, we aggregate the sum of scores of each overlapping
genre and then divide by the sum of their OGS to normalize.

GSS(U,F) = ∑
i∈GSL(U)∪GSL(F)

GSU (i)+GSF(i)
OGSU +OGSF

(3)

The same principle applies for the LSL table.

LSS(U,F) = ∑
i∈LSL(U)∪LSL(F)

LSU (i)+LSF(i)
OLSU +OLSF

(4)

Using (3) and (4), we calculate the FSS that the (active) user
has with a friend in either category, which represents the actual
overlap between them and is used for post score calculation in
a later stage. Based on our initial observations, we found that
applying weight to the equation would increase the accuracy
and the precision of our results. Therefore, we experimented by
applying different weights while running predefined use cases,
which lead us to our approach. We find that a weighted average
is suitable for treating content classification as a defining factor,
and manual testing showed us that giving genre overlap double
the weight boosted accuracy in a more fine-grained fashion.

FSS =
2∗GSS+LSS

3
(5)

Finally, to populate the recommendation lists we gather all
the posts contained in the user’s friends’ profiles and apply
the formula shown in (Equation 6). Each PS result denotes
how interested a user would be in that post, based on that
user’s Genre Scores that overlap with the post’s genres and
how similar preferences the user and the poster have.

PS =
∑i∈GSLU (PG) GSU (i)
|GSLU (PG)|

·FSSposter (6)

The resulting item score is not capped, as the values of genre
and like scores cannot be predicted, and also allows a discreet
ranking among items.

E. Experimental Evaluation

Named entity recognition. A critical phase of the recom-
mendation process is entity recognition, which allows Reveal
to identify the entities that the specific post is related to and
define the genres that are associated with it. To that end,
we measure the effectiveness of our module that maps the
unique video IDs to unique topic, and thus entity, IDs. We
create a dataset by crawling 20 popular music/movie Facebook
Group pages. To obtain accurate results we filter out posts
that do not contain a valid Youtube URL; our final dataset
contains 5,310 links to Youtube. Our module which is able
to identify 4,743 valid title-entities, achieving a coverage of
89.32%, demonstrating the robustness of our approach.

Sentiment analysis threshold. Next, we evaluate our sen-
timent analysis module, and its effectiveness in providing
accurate results regarding the sentiment of a given post’s
content. We obtained datasets published in previous studies that
contained English Tweets and Facebook comments, rendering
them a suitable sample of the type of content we expect our
system to handle. Specifically, we used the following labelled
datasets as ground truth for evaluating our approach:
• Twitter Dataset [13] (5,513 tweets)
• Facebook Comments Dataset [14] (1,000 comments)

We pre-processed the datasets to remove text with a truly
neutral sentiment, i.e., with a score of 0, as such text will not
offer any valuable semantic information about the published
content. Then, to regulate the semantic noise i.e., false
positives/negatives, we experimented with different sentiment
score thresholds, which specified whether a post is classified
as positive or negative. The outcome of our algorithm for each
text was compared to the polarity label in the aforementioned
corpora, to calculate the accuracy. Reveal achieved the best
results for a threshold of 0.7, by correctly labeling 79% and
76% of the positive and negative samples respectively.

Relevance of content. We collect all the data from 38 test
subjects that installed our app. We focus on the posts that belong
to one of the following three Graph API Edges: Links (any post
with an embedded Youtube video), Watches, and Listens.
Table II breaks down the statistics for relevant content identified
by our system’s heuristics, extracted from 3,493 accounts that
were connected to our participants. Interestingly, we identified
many cases of Links with invalid URLs; this included old
Youtube links that were no longer available, or that were
malformed (most likely due to users copy-pasting only part
of the link to their post). As a result, 59.98% (94,626 of the
157,762) of the link posts were broken and, thus, removed. Also
posts under irrelevant post categories (i.e., statuses, photos etc),
amounted to more than 50% of the initial dataset and filtered out
as well. Of the remaining valid posts, 30.9% contained relevant
content under the music and movies categories, indicating that
there is an abundance of content being published that could

TABLE II. Posts collected from participants and their friends.

Type Number of posts
Total 521,685
- Filtered out (irrelevant, broken links) 277,356
- Processed 244,329
Relevant 75,694
- Movies 28,994
- Music 46,700

lead to interesting content being overlooked by users or ignored
by the current selection algorithm of Facebook’s News Feed.

Reveal vs Facebook. To explore whether users missed
relevant content due to Facebook’s personalization algorithm,
we gathered every News Feed post from N=7 participants
(age M=27.6, SD=3.36; 71.4% male), with number of friends
M=547.4, SD=154, that gave us access to their data for a time
period of 2 weeks (maximum allowed by Graph API). We
compared them to the content posted by their friends, and also
processed the data with Reveal to identify posts of interest.
We then compared the two datasets and identified the common
items. The users’ News Feeds contained a total of 23,546 items,
while our system selected 1,680 posts also present in the News
Feed, but also revealed 3,127 additional posts that are suitable
for recommendation as they match the users’ interest profiles.

III. CONCLUSION

We explored the utility of a recommender system within
a social network designed to select content published by the
user’s friends that matches a fine-grained interest profile that
is generated from social data. Our prototype app allowed us
to explore the practical aspects and intricacies of processing
and extracting information from user-published content, and
our subsequent evaluation asserted the effectiveness of our
approach, and the suitability of social networks as a information-
rich ecosystem for providing fine-grained recommendations.

REFERENCES

[1] (2016) Facebook news feed. https://goo.gl/Dupvg8.
[2] B. Gretarsson, J. O’Donovan, S. Bostandjiev, C. Hall, and T. Holerer,

“Smallworlds: Visualizing social recommendations.” Comput. Graph.
Forum, vol. 29, no. 3, 2010.

[3] (2016) Facebook - graph api edges. https://goo.gl/PdWuYm.
[4] S. Mohammad, “From once upon a time to happily ever after: Tracking

emotions in novels and fairy tales,” in 5th ACL-HLT, 2011.
[5] F. Å. Nielsen, “A new ANEW: evaluation of a word list for sentiment

analysis in microblogs,” CoRR, vol. abs/1103.2903, 2011.
[6] S. Gouws, D. Metzler, C. Cai, and E. Hovy, “Contextual bearing on

linguistic variation in social media,” in LSM workshop, ser. LSM, 2011.
[7] B. Liu, M. Hu, and J. Cheng, “Opinion observer: Analyzing and

comparing opinions on the web,” in 14th WWW, ser. WWW, 2005.
[8] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, “Lexicon-

based methods for sentiment analysis,” Comput. Linguist., vol. 37, 2011.
[9] T. De Smedt and W. Daelemans, “Pattern for python,” J. Mach. Learn.

Res., vol. 13, no. 1, 2012.
[10] B. Liu, Sentiment Analysis: Mining Opinions, Sentiments, and Emotions.

Cambridge University Press, 2015.
[11] (2016) Facebook - using actions. https://goo.gl/9schoS.
[12] (2016) Freebase. https://developers.google.com/freebase/.
[13] N. Sanders. (2011) Twitter sentiment corpus. https://goo.gl/QwEP68.
[14] K. Zhang, Y. Cheng, Y. Xie, D. Honbo, A. Agrawal, D. Palsetia, K. Lee,

W.-k. Liao, and A. Choudhary, “Ses: Sentiment elicitation system for
social media data,” in IEEE, ser. ICDMW, 2011.

https://goo.gl/Dupvg8
https://goo.gl/PdWuYm
https://goo.gl/9schoS
https://developers.google.com/freebase/
https://goo.gl/QwEP68

	I Introduction
	II Methodology
	II-A Bootstrapping
	II-B Sentiment Analysis
	II-C Entity Extraction
	II-D Quantifying Similarity
	II-E Experimental Evaluation

	III Conclusion
	References

